En la presente tesis se estudia el problema de particionamiento de hipergrafos en un número fijo de componentes. Los hipergrafos son la generalización de los grafos donde, en lugar de aristas, cada hiperarista puede conectar dos o más vértices. Dado un hipergrafo, se busca dividir su conjunto de vértices en k componentes disjuntas tal que cada vértice esté cubierto únicamente por hiperaristas contenidas completamente en alguna componente, a la vez que se minimiza el costo total de estas hiperaristas. Se proponen formulaciones de Programación Entera para los problemas de k-equiparticionamiento, particionamiento de tamaño mínimo, particionamiento balanceado y k-equiparticionamiento en hiperárboles lineales. Además, se presentan algunos tipos de desigualdades válidas a ser implementadas en las diferentes formulaciones. Finalmente, se discuten los resultados computacionales de las diferentes formulaciones para distintas instancias.
En la presente tesis estudiamos un problema de control óptimo no-suave asociado a una ecuación que modela un fluido dilatante. Analizamos la diferenciabilidad direccional de una no linealidad no-suave presente en la ecuación de estado. Luego, analizamos la diferenciabilidad direccional del operador solución asociado a la ecuación de estado. Se establece una condición necesaria de optimalidad de primer orden, relacionada al concepto de estacionariedad de Bouligand, la cual se deduce de la diferenciabilidad del operador solución. Obtenemos un sistema de optimalidad correspondiente a un concepto de estacionariedad débil, mediante una regularización del problema de control óptimo y posterior paso al límite. Finalmente, obtenemos un sistema de optimalidad relacionado a un concepto de estacionariedad más fuerte, y demostramos que este concepto es equivalente a la estacionariedad de Bouligand, en el caso de nuestro problema de control óptimo.
Escuela Politécnica Nacional, Edificio Nº 3, Piso Nº 7
(+593) 2 2976 300 Ext: 1551
Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.
Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.